2. Thermal Physics

2.2 Thermal properties and temperature

Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer	Marks
(a)(i)	evaporation	B1
(a)(ii)	any three from the following:	В3
	at the surface	
	more energetic molecules escape (from liquid) owtte	
	(as they) overcome / break forces / bonds (between molecules)	
	(liquid (molecules) →) gas / vapour (molecules)	

Q2.

Question	Answer	Marks
(a)(i)	conduction	B1
(a)(ii)	1 80 (°C)	B1
	2 170 (°C)	B1
	3 26 (minutes)	B1

Q3.

Question	Answer	Marks
(a)	high(er/est) energy molecules	B1
	(near the surface) escape (from surface)	B1
(b)	(temperature) decreases	B1
	AND any two from: higher energy molecules have escaped (leaving) lower energy particles behind (so) average energy of remaining molecules is lower	B2

Q4.

Question	Answer	Marks
(a)	0 AND 100 correctly labelled	M1
	36	A1
(b)(i)	Melting	B1
	Any one of: molecules gain energy molecule (begin to) break (some) bonds arrangement becomes irregular or arrangement changes	B1
(b)(ii)	boiling	B1
	Any one of: molecules break (all) bonds molecules move (more) freely molecules become widely separated or far apart	B1

Q5.

Question	Answer	Marks
4(a)(i)	expand or increase in size/volume increase in pressure decrease in density	B1
4(a)(ii)	any 3 from: density (of air) is less molecules move faster/have more (kinetic) energy more collisions (per second) collisions with surface OR balloon (owtte) more force (in collisions) molecules move (further) apart	В3

Paper 4

Q6.

Question	Answer	Marks
(a)	 Any one method to transfer measurable amount of thermal energy for Δθ: (a) to aluminium block (with electrical heater) (b) from aluminium block to known liquid (c) from known liquid to insulated aluminium (calorimeter) (d) to known liquid and aluminium (calorimeter) 	B1
	2 Determination of energy transferred for $\Delta\theta$, to match workable method in 1: (a) Use of $E = Pt$ OR $E = IVt$ (b) Use of $E = mc\Delta\theta$ with s.h.c. of known liquid (c) Use of $E = mc\Delta\theta$ with s.h.c. of known liquid (d) Use of $E = Pt$ OR $E = IVt$ AND $E = mc\Delta\theta$ (with known s.h.c. of liquid)	B1
	3 Any one measurement from:	B1
	4 $c = E/m\Delta\theta$ OR $(c =) E/m\Delta\theta$	B1
(b)(i)	Any three from:	В3
	1 (net) transfer of energy from higher temperature to lower temperature OR (net) transfer of energy from water / to dish 2 (energy transfer) by conduction OR aluminium is a good conductor (of thermal energy)	
	3 temperature of water decreases AND temperature of dish increases	
	4 no (net) transfer of energy when temperature of dish = temperature of water	
(b)(ii)	(particles) gain energy in kinetic store (as temperature of aluminium increases)	B1
	(average) separation of (aluminium) particles increases OR (aluminium) particles move further apart owtte	B1
(b)(iii)	(water) molecules with more/enough energy escape from the surface	A2
	escape of more energetic molecules (from water) OR (molecules) leave from the surface	C1

Q7.

Question	Answer	Marks
(a)	boiling happens at a specific temperature OR evaporation happens at a range of temperatures OR evaporation happens at any temperature (below the boiling point)	B1
	evaporation happens at the surface of the water OR boiling happens throughout the water	B1
(b)	any four from:	В4
	1 (as the water is heated) the number of gas particles increases	
	2 (particles) gain internal / kinetic energy	
	3 (there are) more frequent collisions between particles and surface / wall / lid of the cooker	
	4 (each) collision (of particles) is harder / exerts more force (on cooker surface) OR greater change of momentum when particles collide (on cooker surface)	
	5 pressure \propto (total) force (of collisions) OR pressure = force / area	

Q8.

Question	Answer	Marks
(a)	(evaporation:) (only) at the surface OR boiling: happens throughout the liquid	B1
	(evaporation:) takes place at any temperature OR boiling: takes place at a specific temperature / boiling point	B1
(b)(i)	113 (K)	B1
(b)(ii)	conduction	B1
	convection	B1
(c)	particles collide with the walls / container	B1
	(particles) exert a force on the walls OR collision with walls produces a change in momentum (of particles)	B1
	pressure is force per unit area OR $p = F/A$ OR pressure is rate of change of momentum per unit area	B1

Q9.

Question	Answer	Marks
(a)(i)	evaporation	B1
(a)(ii)	air is drier	B1
	because water vapour has condensed / turned back to liquid in the condenser	B1
(b)(i)	gravitational (force) OR weight	B1
(b)(ii)	(force is) perpendicular to the motion (of the clothes)	B1
(c)	uses (solar/wind) energy which is renewable OR energy (re)sources not used to generate electricity OR greenhouse gases not produced OR does not use (fossil) fuels	B1

Q10.

I		1 1
(b)	$1.5 \times 10^4 \mathrm{J}$	A2
	$c = (\Delta)E/m\Delta\theta \ (\Delta E =) \ mc\Delta\theta \ OR \ (\Delta E =) \ 0.18 \times 4200 \times 20$	C1
(c)	3900 Pa	A2
	$(\Delta p =) \rho g(\Delta) h \text{ OR } (\Delta p =) 1.0 \times 10^3 \times 9.8 \times 0.4 \text{ OR}$ $(\Delta p =) 1.0 \times 10^3 \times 9.8 \times 40 \text{ OR } (\Delta p =) 3.9 \times 10^N$	C1

Q11.

Question	Answer	Marks
(a)(i)	$c = (\Delta)E/m\Delta\theta \mathbf{OR} (\Delta E =) mc\Delta\theta$	B1
	$(\Delta \theta$ =) 21.5 – 19 OR ($\Delta \theta$ =) 2.5 (°C)	B1
	$(\Delta E =) 0.6(0) \times 4200 \times 2.5 \text{ OR } (\Delta E =) 0.6(0) \times 4200 \times \{21.5 - 19\}$	B1
(a)(ii)	(maximum possible efficiency =) 3.1% or 0.031	A4
	$E = Pt \text{ OR } (E =) Pt \text{ OR } (E =) 13 \times 500 \text{ OR } (E =) 6500$	C1
	(useful energy output =) 6500 – 6300 OR (useful energy output =) 200	C1
	efficiency = useful energy (output) / total energy (input) (× 100%) OR (efficiency =) useful energy (output) / total energy (input) (× 100%) OR (efficiency =) {6500 - 6300} / 6500 OR (efficiency =) 200 / 6500 (× 100%)	C1
	OR	
	P = E/t OR (P =) E/t OR (P =) 6 300 / 500 OR (P =) 12.6 (W)	(C1)
	(useful power output =) total power (output) – wasted power (output) OR (useful power output =) 13 – {6300 / 500} OR (useful power output =) 13–12.6	(C1)
	efficiency = useful power (output) / total power (input) (× 100%) OR (efficiency =) useful power (output) / total power (input) (× 100%) OR (efficiency =) 0.4 / 13 (× 100%)	(C1)
(b)	any one from: temperature change is an underestimate (due to thermal energy losses) (thermal energy is) transferred from the water (to air / beaker / bench) energy (other than light) transferred in lamp (filament / glass / internal structure) (some) water evaporates	B1

Q12.

Question	Answer	Marks
(a)(i)	$\rho = m/V \text{ OR } m = \rho V$	B1
	(<i>m</i> =) 1.2 × 4.5 × 6.1 × 2.4 (= 79 kg) OR (<i>m</i> =) 79.056 (kg)	B1
(a)(ii)	290 s	A4
	$c = (\Delta)E/m\Delta\theta \text{ OR } (\Delta E =) mc\Delta\theta \text{ OR } (\Delta E =) 79 \times 1000 \times 4(.0) \text{ OR } (\Delta E =) 316000 \text{ OR } (\Delta\theta =) 4(.0)$	C1
	$P = (\Delta)E/t \text{ OR } (\Delta E =) Pt \text{ OR } (\Delta E =) 1100 \times t$	C1
	$(t =) mc\Delta\theta/P \text{ OR } (t =) 79 \times 1000 \times 4(.0)/1100 \text{ OR } (t =) 316000/1100$	C1
(a)(iii)	any one from: (thermal) energy is transferred to furniture / walls / objects (in the room) (thermal) energy is transferred through windows / doors / floor / ceiling / from the room	B1
(b)	conduction AND convection	B1

Q13.

(b)	$(-)3.5 \times 10^3 \mathrm{J}$	A2	1
	E = CDT in any form or 89 × (21 – (–18) or 89 × (3) or 89 × 39	C1	

Q14.

Question	Answer	Marks
(a)	$(E =) 410000000\mathrm{J}$ OR $410\mathrm{MJ}$ OR $4.1\times10^8\mathrm{J}$	А3
	$\Delta E = mc\Delta T \mathbf{OR} (\Delta E =) mc\Delta T \mathbf{OR} 1200 \times 960 \times 360$	C1
	(ΔT =) 360 (°C)	C1

Q15.

Question	Answer	Marks
(a)	fast(er) / high(er) speed / (more) energetic molecules escape (into air)	B1
	average speed / average kinetic energy of molecules decreases	B1
	temperature related to speed / energy of molecules or slow(er) / low(er) speed / less energetic molecules remain (in water)	B1

Q16.

Question		Ansv	ver	Ma	ırks
(a)	temperature				В1
	at which liquid becomes a gas or liquid and gas exist to	ogether			В1
(b)(i)	1.8 × 10 ⁵ J				A2
	(E =) VIt (in any form) or $230 \times 13 \times 60$ or 230×13 or	3000		C1	
(b)(ii)	9.1 × 10 ⁻³ kg/s		9.1 × 10 ⁻³ kg/s		A4
	(ΔT =) 100 – 22 or 78	or	$(\Delta T =) 100 - 22 \text{ or } 78$	C1	
	$m = E/c\Delta T$ (in any form) or $1.8 \times 10^5/(4200 \times 78)$	or	(rate =) $P/c\Delta T$ (in any form) or $m = E/c\Delta T$ and $E = Pt$	C1	
		or	3000 / (4200 × 78) or 230 × 13 / (4200 × 78) or 9.1 / 9.2 × 10 ^N	C1	

Q17.

Question	Answer	Marks
(a)	statement: bore of constant (cross sectional) area	B1
	explanation: idea of same movement / change in length of liquid / thread AND for same increase in volume / expansion (of liquid)	B1
	statement: (liquid has) constant thermal expansion	B1
	explanation: liquid moves same distance for each °C temperature rise	B1
(b)	heat capacity / it is small	B1
	only uses / needs a small amount of (thermal) energy (to raise its temperature)	B1
(c)	36 J	А3
	$(E =) C\Delta T$ in any form	C1
	$(E =) 0.11 \times (345 - 20) \text{ OR } (\Delta T =) 325 (^{\circ}\text{C})$	C1

Q18.

Question	Answer	Marks
(a)	aluminium is a (good) conductor (of heat) and plastic is a poor conductor / does not conduct (heat)	B1
(b)(i)	increase in kinetic energy of molecules or increase in potential energy of molecules	B1
(b)(ii)	any three from: atoms (touching the hotplate) / lattice vibrate (faster) atoms pass on energy / vibration to neighbouring atoms / to other atoms by collision atoms pass on energy to electrons electrons hit distant atoms or electrons move (through lattice)	В3
`(b)(iii)	molecules escape from the liquid (as a vapour)	B1
	bonds broken / (attractive) forces overcome	B1
	molecules gain potential energy or work done (to separate molecules / break bonds / overcome forces)	B1
(b)(iv)	840 W	A3
	$(E =) \ ml_v$ in any form or $0.11 \times 2.3 \times 10^6$ or 2.53×10^5	C1
	(rate =) ml_e/t in any form or $0.11 \times 2.3 \times 10^6/300$ or $2.53 \times 10^5/300$	C1

Q19.

Question	Answer	Marks
(a)(i)	random / haphazard / zig-zag / irregular	B1
(a)(ii)	(liquid / water) molecules move fast OR (pollen) particles massive	B1
	collide / bombard	B1
	uneven collisions / collisions from different directions (cause random movement) OR (liquid / water) molecules move randomly	B1
(b)(i)	cooling	B1
	(thermal) energy used / needed to evaporate (ethanol) / overcome attractive forces(between molecules / particles)	B1
	thermal energy taken from skin / patient / person	B1
	alternative route for last two m.p.s	
	more / most energetic (liquid) molecules / particles escape OR less / least energetic (liquid) remain	(B1)
	less / least energetic molecules / particles linked to lower temp (of skin)	(B1)
(b)(ii)	greater / increases / faster / higher	B1

Q20.

(c)(i)	molecules overcome forces / gain potential energy as the liquid boils	B1	ı
(c)(ii)	$(m =) \rho V$ (in any form) or 0.86×50 or 43 (g)	C1	ı
	$(l_r =) Q \div m$ (in any form) or 18 000 / 43 or 18 000 / (0.86 × 50)	C1	ı
	$420 \text{ J/g} \text{ or } 4.2 \times 10^5 \text{ J/kg}$	A1	ı

Q21.

Question	Answer	Marks
(a)	$E = mc\Delta T$ in any form OR (E =) $mc\Delta T$	C1
	efficiency = (energy) output / (energy) input in any form	C1
	$15 \times 4200 \times \Delta T = 5000 \times 3600 \times 0.2$	C1
	$(\Delta T = 5000 \times 3600 \times 0.2 / 15 \times 4200 =) 57 ^{\circ}C$	A1